Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 727
Filtrar
Más filtros

Medicinas Complementárias
Intervalo de año de publicación
1.
Water Res ; 252: 121239, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38335753

RESUMEN

Limited mineralization of organic phosphorus to phosphate during the anaerobic digestion process poses a significant challenge in the development of cost-effective nutrient recovery strategies from anaerobically digested poultry wastewater (ADPW). This study investigated the influence of organic acids on phosphorus solubilization from ADPW, followed by its recycling in the form of struvite using a bubble column electrolytic reactor (BCER) without adding chemicals. The impact of seeding on the efficiency of PO43- and NH3-N recovery as well as the size distribution of recovered precipitates from the acid pre-treated ADPW was also evaluated. Pre-treatment of the ADPW with oxalic acid achieved complete solubilization of phosphorus, reaching ∼100% extraction efficiency at pH 2.5. The maximum removal efficiency of phosphate and ammonia-nitrogen from the ADPW were 88.9% and 90.1%, respectively, while the addition of 5 and 10 g/L struvite seed to the BCER increased PO43- removal efficiency by 9.6% and 11.5%, respectively. The value of the kinetic rate constant, k, increased from 0.0176 min-1 (unseeded) to 0.0198 min-1, 0.0307 min-1, and 0.0375 min-1 with the seed loading rate of 2, 5, and 10 g/L, respectively. Concurrently, the average particle size rose from 75.3 µm (unseeded) to 82.1 µm, 125.7 µm, and 148.9 µm, respectively. Results from XRD, FTIR, EDS, and dissolved chemical analysis revealed that the solid product obtained from the recovery process was a multi-nutrient fertilizer consisting of 94.7% struvite with negligible levels of heavy metals.


Asunto(s)
Aves de Corral , Aguas Residuales , Animales , Estruvita , Fosfatos/análisis , Fósforo/análisis , Compuestos Orgánicos , Nutrientes/análisis , Precipitación Química
2.
Res Vet Sci ; 167: 105133, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38176207

RESUMEN

Postbiotics and parabiotics (PP) are emerging fields of study in animal nutrition, preventive veterinary medicine, and animal production. Postbiotics are bioactive compounds produced by beneficial microorganisms during the fermentation of a substrate, while parabiotics are inactivated beneficial microbial cells, either intact or broken. Unlike probiotics, which are live microorganisms, PP are produced from a fermentation process without live cells and show significant advantages in promoting animal health owing to their distinctive stability, safety, and functional diversity. PP have numerous beneficial effects on animal health, such as enhancing growth performance, improving the immune system and microbiota of the gastrointestinal tract, aiding ulcer healing, and preventing pathogenic microorganisms from colonizing in the skin. Moreover, PP have been identified as a potential alternative to traditional antibiotics in veterinary medicine due to their ability to improve animal health without the risk of antimicrobial resistance. This review comprehensively explores the current research and applications of PP in veterinary medicine. We aimed to thoroughly examine the mechanisms of action, benefits, and potential applications of PP in various species, emphasizing their use specifically in livestock and poultry. Additionally, we discuss the various routes of administration to animals, including feed, drinking water, and topical use. This review also presents in-depth information on the methodology behind the preparation of PP, outlining the criteria employed to select appropriate microorganisms, and highlighting the challenges commonly associated with PP utilization in veterinary medicine.


Asunto(s)
Microbiota , Probióticos , Animales , Probióticos/farmacología , Probióticos/uso terapéutico , Aves de Corral , Tracto Gastrointestinal , Ganado
3.
Biol Trace Elem Res ; 202(1): 268-290, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37060542

RESUMEN

Zinc oxide nanoparticles (ZnO NPs) have involved a lot of consideration owing to their distinctive features. The ZnO NPs can be described as particularly synthesized mineral salts via nanotechnology, varying in size from 1 to 100 nm, while zinc oxide (ZnO), it is an inorganic substrate of zinc (Zn). The Zn is a critical trace element necessary for various biological and physiological processes in the body. Studies have revealed ZnO NPs' efficient immuno-modulatory, growth-promoting, and antimicrobial properties in poultry birds. They offer increased bioavailability as compared to their traditional sources, producing better results in terms of productivity and welfare and consequently reducing ecological harm in the poultry sector. However, they have also been reported for their toxicological effects, which are size, shape, concentration, and exposure route dependent. The investigations done so far have yielded inconsistent results, therefore, a lot of additional studies and research are required to clarify the harmful consequences of ZnO NPs and to bring them to a logical end. This review explores an overview of efficient possible role of ZnO NPs, while comparing them with other nutritional Zn sources, in the poultry industry, primarily as dietary supplements that effect the growth, health, and performance of the birds. In addition to the anti-bacterial mechanisms of ZnO NPs and their promising role as antifungal, and anti-colloidal agent, this paper also covers the toxicological mechanisms of ZnO NPs and their consequent toxicological hazards to vital organs and the reproductive system of poultry birds.


Asunto(s)
Nanopartículas del Metal , Nanopartículas , Oligoelementos , Óxido de Zinc , Animales , Óxido de Zinc/toxicidad , Óxido de Zinc/química , Aves de Corral , Nanopartículas del Metal/toxicidad , Nanopartículas del Metal/química , Zinc
4.
ScientificWorldJournal ; 2023: 6674891, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38021480

RESUMEN

Antibiotic-resistant bacteria are becoming increasingly common, leading to a global health crisis. The effects of abusing antibiotics not only increase pathogenic resistance but also cause various diseases and syndromes. Gut microbiota contains many beneficial roles for health, while antibiotics kill both pathogens and gut microbiota which is considered one of the major side effects of antibiotics. In fact, new antibiotic compounds are needed in this urgent scenario; phytoremediation is the oldest but most effective method, and research on the antibacterial properties of several types of medicinal plants has already been conducted. Tea and agarwood plants are well known for their economic contribution in both beverage and cosmetic production, as well as for their medicinal value. In this study, tea and agarwood leaf extracts were analyzed for their antimicrobial activity against both pathogenic and beneficial bacteria. Fresh tea (Camellia sinensis) leaves were collected in three varieties, namely, BT-6 from Sylhet, BT-7 from Moulvibazar, and BT-8 from Habiganj; also, green tea (nonfermented tea), black tea (fully fermented tea), and agarwood (Aquilaria malaccensis) were collected from Sylhet region of Bangladesh. Unlike commercial antibiotics, which have side effects on probiotics (beneficiary bacteria), leaf extract activities were analyzed to check if they had positive effects on probiotics that can be found in the gastrointestinal tract as well as dairy products. Potential beneficiary bacteria, Lysinibacillus macroides strain SRU-001 (NCBI accession no. MW665108), and pathogenic bacteria, Aeromonas caviae strain YPLS-62 (NCBI accession no. MW666783), were isolated from the small intestine of poultry and curd, respectively. Tea and agarwood leaves (5 g powder/80 mL methanol) with solvents were kept for seven days at room temperature, and extracts were applied for antimicrobial assays by the disc diffusion assay against the isolated bacteria. 50 µL of each leaf extract was examined against 50 µL of each bacterial culture, where gentamicin was a control. After 24 hours of incubation, tea and agarwood leaf extracts showed an 11-15 mm zone of inhibition against pathogenic A. caviae, while only BT-8 showed 7 mm (disc diameter 6 mm) against probiotic L. macroides. However, compared to leaf extracts, gentamicin showed a 27 mm zone of inhibition against both L. macroides strain SRU-001 and A. caviae strain YPLS-62 bacteria. This research clearly indicates that gentamicin kills both pathogenic and beneficiary bacteria, while leaf extracts from tea and agarwood plants contain antimicrobial activity against only pathogenic A. caviae but no effects on probiotic L. macroides. This outcome indicates not only the potential therapeutic values of tea and agarwood leaves as antibiotics over commercial antibiotics but also the chance of having pathogens in curd and potential beneficial bacteria from the poultry small intestine.


Asunto(s)
Extractos Vegetales , Aves de Corral , Animales , Extractos Vegetales/química , Bangladesh , Bacterias , Antibacterianos/química , Fitoquímicos/farmacología , Fitoquímicos/química , , Gentamicinas/farmacología , Pruebas de Sensibilidad Microbiana
5.
Int J Mol Sci ; 24(19)2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37834022

RESUMEN

European Union (EU) countries strive to improve the quality and safety of food of animal origin. Food production depends on a good microbiological quality of fodder. However, feed can be a reservoir or vector of pathogenic microorganisms, including Salmonella or Escherichia coli bacteria. Salmonella spp. and E. coli are the two most important food-borne pathogens of public health concern. Contamination with these pathogens, mainly in the poultry sector, can lead to serious food-borne diseases. Both microorganisms can form biofilms on abiotic and biotic surfaces. The cells that form biofilms are less sensitive to disinfectants, which in turn makes it difficult to eliminate them from various surfaces. Because the usage of formaldehyde in animal feed is prohibited in European countries, the replacement of this antibacterial with natural plant products seems very promising. This study aimed to assess the inhibitory effectiveness of Vaccinium vitis-idaea extract against biofilm produced by model Salmonella enterica and E. coli strains. We found that formaldehyde could effectively kill both species of bacterial cells in biofilm, while the lingonberry extract showed some antibiofilm effect on S. enterica serovar Senftenberg. In conclusion, finding natural plant products that are effective against biofilms formed by Gram-negative bacteria is still challenging.


Asunto(s)
Escherichia coli , Vaccinium vitis-Idaea , Animales , Aves de Corral , Granjas , Salmonella , Biopelículas , Formaldehído/farmacología , Extractos Vegetales/farmacología
6.
Trop Anim Health Prod ; 55(6): 360, 2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37851183

RESUMEN

Poultry is commonly infected by different bacteria and parasites in the environment, resulting in increased morbidity and mortality, but immunostimulants have been enhancing non-specific defense mechanisms conferring laying hens' protection. For this purpose, the pulp of yellow (Pouteria campechiana), white (Casimiroa edulis), and black (Diospyros digyna) sapotes were nanoencapsulated (YWB-SN) and evaluated in laying hens' peripheral blood leukocytes to test their addition to the experimental diets at a concentration of 0.5% (5g/kg of dry food) for 1 month (with two samples at days 15 and 30). The YWB-SN were safe when exposed to peripheral blood leukocytes (PBLs). The in vitro experiment showed that these nanocapsules enhanced reactive oxygen species production, and B-SN stimulated phagocytosis activity. Concerning the proinflammatory cytokine (TNF-α) transcription, this gene was upregulated after W-SN stimulation, while B-SN upregulated the IgG gene expression significantly. IgM was upregulated with any YBW-SN in PBLs after 24 h of stimulation. The in vivo study showed a notable B-SN immunostimulation in serum and an upregulation of TNF-α, IgM, and IgG mRNA transcription. Therefore, this study provides a new result of the yellow, white, and black sapote nanocapsules as a functional food for the poultry industry, highlighting the black sapote Diospyros digyna immunostimulant effect.


Asunto(s)
Casimiroa , Diospyros , Manilkara , Nanocápsulas , Pouteria , Animales , Femenino , Pollos/fisiología , Adyuvantes Inmunológicos/farmacología , Factor de Necrosis Tumoral alfa , Dieta/veterinaria , Aves de Corral , Suplementos Dietéticos , Inmunoglobulina G , Inmunoglobulina M , Alimentación Animal/análisis
7.
BMC Microbiol ; 23(1): 296, 2023 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-37848818

RESUMEN

BACKGROUND: Phytase catalyses the breakdown of complex organic forms of phosphorous into simpler forms by sequential hydrolysis of phosphate ester bonds to liberate the inorganic phosphate. Supplementation of feeds with bacterial phytase therefore could enhance the bioavailability of phosphorus and micronutrients. Hence, the aim of this study was to isolate and characterize phytase producing bacteria from rhizosphere soil, fresh poultry excreta, and cattle shed to evaluate their potential in improving poultry feeds. Phytase producing bacteria were isolated using wheat bran extract medium. RESULTS: A total of 169 bacterial isolates were purified and screened for phytase activity. Out of these, 36 were confirmed as positive for phytase enzyme activity. The bacterial isolates were identified by cultural, morphological, and biochemical features. The isolates were also identified by using 16 S rRNA gene sequencing. The bacterial isolates (RS1, RS8, RS10 and RS15) were provided with gene bank database accession numbers of MZ407562, MZ407563, MZ407564 and MZ407565 respectively. All isolates increased phytase production when cultured in wheat bran extract medium (pH 6) supplemented with 1% (wt/v) galactose and 1% (wt/v) ammonium sulphate incubated at 50oC for 72 h. Proximate composition analysis after supplementation of phytase showed that phytase supplementation improved bioavailability of phosphorus, calcium, potassium and sodium in poultry feed. CONCLUSIONS: Overall, this study showed that the nutritional value of poultry feed can be improved using microbial phytase enzyme which reduces the cost of supplementation with inorganic phosphate.


Asunto(s)
6-Fitasa , Aves de Corral , Animales , Bovinos , 6-Fitasa/genética , 6-Fitasa/análisis , 6-Fitasa/química , Fósforo , Fosfatos , Fibras de la Dieta , Alimentación Animal/análisis , Dieta/veterinaria
8.
PLoS One ; 18(8): e0269717, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37585472

RESUMEN

Carlsberg subtilisin from Bacillus licheniformis PB1 was investigated as a potential feed supplement, through immobilizing on bentonite for improving the growth rate of broilers. Initially, the pre-optimized and partially-purified protease was extracted and characterized using SDS-PAGE with MW 27.0 KDa. The MALDI-TOF-MS/MS spectrum confirmed a tryptic peptide peak with m/z 1108.496 referring to the Carlsberg subtilisin as a protein-digesting enzyme with alkaline nature. The highest free enzyme activity (30 U/mg) was observed at 50°C, 1 M potassium phosphate, and pH 8.0. the enhanced stability was observed when the enzyme was adsorbed to an inert solid support with 86.39 ± 4.36% activity retention under 20 optimized conditions. Additionally, the dried immobilized enzyme exhibited only a 5% activity loss after two-week storage at room temperature. Structural modeling (Docking) revealed that hydrophobic interactions between bentonite and amino acids surrounding the catalytic triad keep the enzyme structure intact upon drying at RT. The prominent hygroscopic nature of bentonite facilitated protein structure retention upon drying. During a 46-days study, supplementation of boilers' feed with the subtilisin-bentonite complex promoted significant weight gain i.e. 15.03% in contrast to positive control (p = 0.001).


Asunto(s)
Aves de Corral , Subtilisinas , Animales , Subtilisinas/metabolismo , Aves de Corral/metabolismo , Pollos/metabolismo , Bentonita , Espectrometría de Masas en Tándem , Subtilisina , Concentración de Iones de Hidrógeno
9.
Poult Sci ; 102(10): 103003, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37634267

RESUMEN

The most significant occurrence of food-borne diseases is due to Campylobacter and Salmonella contamination from chicken meat, and for this reason, strict regulations about strategies to improve the control of food pathogens are imposed by food safety authorities. Despite the efforts of poultry industry since the beginning of risk analysis and critical control point to reduce the burden of food-borne illness, technological barriers along the way are increasingly necessary to ensure safe food. The aim of this review was to carry out a scientific approach to the influence of peracetic acid (PAA) as an antimicrobial and its toxicological safety, in particular the stabilizer used in the formulation of PAA, 1-hydroxyethylidene 1,1-diphosphonic acid (HEDP), suggesting the possibility of researching the residual HEDP in meat, which would allow the approval of the PAA by the health authorities of several countries that still restrict it. This review also aims to ascertain the effectiveness of PAA, in different cuts and carcasses, by different application methods, comparing the effectiveness of this antimicrobial with other antimicrobials, and its exclusive or combined use, for the decontamination of poultry carcasses and raw parts. The literature results support the popularity of PAA as an effective intervention against pathogenic bacteria during poultry processing.


Asunto(s)
Antiinfecciosos , Campylobacter , Enfermedades Transmitidas por los Alimentos , Animales , Ácido Peracético/farmacología , Pollos/microbiología , Ácido Etidrónico , Antiinfecciosos/farmacología , Carne/microbiología , Aves de Corral , Enfermedades Transmitidas por los Alimentos/veterinaria , Microbiología de Alimentos , Manipulación de Alimentos/métodos
10.
Poult Sci ; 102(10): 102938, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37572619

RESUMEN

Studies from our laboratory over the past decade have yielded new information with regard to the dietary enrichment of eggs and poultry meat with omega-3 (n-3) polyunsaturated fatty acids (PUFA) but have also generated a number of unanswered questions. In this review, we summarize the novel findings from this work, identify knowledge gaps, and offer possible explanations for some perplexing observations. Specifically discussed are: 1) Why feeding laying hens and broilers an oil rich in stearidonic acid (SDA; 18:4 n-3), which theoretically bypasses the putative rate-limiting step in the hepatic n-3 PUFA biosynthetic pathway, does not enrich egg yolks and tissues with very long-chain (VLC; ≥20 C) n-3 PUFA to the same degree as obtained by feeding birds oils rich in preformed VLC n-3 PUFA; 2) Why in hens fed an SDA-rich oil, SDA fails to accumulate in egg yolk but is readily incorporated into adipose tissue; 3) How oils rich in oleic acid (OA; 18:1 n-9), when co-fed with various sources of n-3 PUFA, attenuates egg and tissue n-3 PUFA contents or rescues egg production when co-fed with a level of docosahexaenoic acid (DHA; 22:6 n-3) that causes severe hypotriglyceridemia; and 4) Why the efficiency of VLC n-3 PUFA deposition into eggs and poultry meat is inversely related to the dietary content of α-linolenic acid (ALA; 18:3 n-3), SDA, or DHA.


Asunto(s)
Pollos , Ácidos Grasos Omega-3 , Animales , Femenino , Pollos/metabolismo , Aves de Corral/metabolismo , Suplementos Dietéticos , Alimentación Animal/análisis , Óvulo/metabolismo , Ácidos Grasos Omega-3/metabolismo , Ácidos Docosahexaenoicos/metabolismo , Yema de Huevo/metabolismo , Ácidos Grasos Insaturados/metabolismo , Ácidos Grasos/metabolismo
11.
Environ Monit Assess ; 195(8): 1011, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37526760

RESUMEN

The degradation of surface water quality has been a widespread concern around the world. However, irrigation canal water does not attract much attention although it is important to agriculture and population. In this study, a 5-year water quality monitoring of surface water was conducted in the lower West Main Canal of the Ganfu Plain irrigation district to identify the levels and pollution sources of nitrogen and phosphorus.Over 75% of samples had total phosphorus (TP) concentrations of > 0.02 mg/L, and all samples had total nitrogen (TN) concentrations of > 0.2 mg/L, indicating a risk of eutrophication. The concentrations of NO3--N and NH4+-N averagely occupied 57% and 18% of TN, respectively. PCA analysis showed that phosphorus and nitrogen in canal water were associated with meteorological factors, urban life and surface runoff, agricultural cultivation, livestock-poultry breeding, and water-sediment interaction in the wet season, whereas they were affected by meteorological factors, industrial effluent, urban domestic sewage, and livestock-poultry breeding in the dry season. Absolute principal component score-multiple linear regression (APCS-MLR) model results revealed that (1) agricultural cultivation plus livestock-poultry breeding contributed 43.2% of TP in canal water in the wet season, while livestock-poultry breeding contributed 52.9% in the dry season, and (2) domestic sewage plus surface runoff contributed 29.4% of TN in the wet season, while livestock-poultry breeding contributed 45.9% in the dry season. The unidentified sources had significant contributions of > 20% for almost all variables. So further investigations are required for determining unidentified sources, and anthropogenic pollution control is imperative for canal water quality protection.


Asunto(s)
Monitoreo del Ambiente , Contaminantes Químicos del Agua , Animales , Monitoreo del Ambiente/métodos , Nitrógeno/análisis , Fósforo/análisis , Aguas del Alcantarillado/análisis , Ríos , Contaminantes Químicos del Agua/análisis , Calidad del Agua , China , Ganado , Aves de Corral
12.
J Sci Food Agric ; 103(15): 7333-7342, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37486290

RESUMEN

Phytase supplementation is gaining importance in animal nutrition because of its effect on phosphorus (P) digestibility and the increasing relevance of P for sustainable production. The potential inhibitors of phytase efficacy and phytate degradation, such as calcium (Ca) and zinc (Zn), have been a subject of intense research. This review focuses on the interactions of Zn with phytate and phytase in the digestive tract of poultry and pigs, with an emphasis on the effects of Zn supplementation on phytase efficacy and P digestibility. In vitro studies have shown the inhibitory effect of Zn on phytase efficacy. However, relevant in vivo studies are scarce and do not show consistent results for poultry and pigs. The results could be influenced by different factors, such as diet composition, amount of Zn supplement, mineral concentrations, and phytase supplementation, which limit the comparability of studies. The chosen response criteria to measure phytase efficacy, which is mainly tibia ash, could also influence the results. Compared to poultry, the literature findings are somewhat more conclusive in pigs, where pharmacological Zn doses (≥ 1000 mg kg-1 Zn) appear to reduce P digestibility. To appropriately evaluate the effects of non-pharmacological Zn doses, further studies are needed that provide comprehensive information on their experimental setup and include measurements of gastrointestinal phytate degradation to better understand the mechanisms associated with Zn and phytase supplements. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Asunto(s)
6-Fitasa , Zinc , Porcinos , Animales , Zinc/metabolismo , 6-Fitasa/metabolismo , Ácido Fítico/metabolismo , Aves de Corral/metabolismo , Digestión , Alimentación Animal/análisis , Suplementos Dietéticos , Dieta , Tracto Gastrointestinal/metabolismo
13.
J Anim Physiol Anim Nutr (Berl) ; 107(6): 1429-1443, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37435748

RESUMEN

Lipids are a concentrated source of energy with at least twice as much energy as the same amount of carbohydrates and protein. Dietary lipids provide a practical alternative toward increasing the dietary energy density of feeds for high-performing modern broilers. However, the digestion and absorption of dietary lipids are much more complex than that of the other macronutrients. In addition, young birds are physiologically limited in their capacity to utilise dietary fats and oils effectively. The use of dietary emulsifiers as one of the strategies aimed at improving fat utilisation has been reported to elicit several physiological responses including improved fat digestibility and growth performance. In practical terms, this allows for the incorporation of lipids into lower-energy diets without compromising broiler performance. Such an approach may potentially lower feed costs and raise revenue gains. The current review revisits lipids and the different roles that they perform in diets and whole-body metabolism. Additional information on the process of dietary lipid digestion and absorption in poultry; and the physiological limitation brought about by age on lipid utilisation in the avian gastrointestinal tract have been discussed. Subsequently, the physiological responses resulting from the dietary supplementation of exogenous emulsifiers as a strategy for improved lipid utilisation in broiler nutrition are appraised. Suggestions of nascent areas for a better understanding of exogenous emulsifiers have been highlighted.


Asunto(s)
Pollos , Aves de Corral , Animales , Pollos/fisiología , Dieta/veterinaria , Grasas de la Dieta/metabolismo , Digestión/fisiología , Suplementos Dietéticos , Alimentación Animal/análisis , Fenómenos Fisiológicos Nutricionales de los Animales
14.
Sci Total Environ ; 900: 165769, 2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-37506909

RESUMEN

The use of antibiotics in animal production is linked to the emergence and spread of antibiotic-resistant bacteria, a threat to animal, environmental and human health. Copper (Cu) is an essential element in poultry diets and an alternative to antibiotics, supplementing inorganic or organic trace mineral feeds (ITMF/OTMF). However, its contribution to select multidrug-resistant (MDR) and Cu tolerant Enterococcus, a bacteria with a human-animal-environment-food interface, remains uncertain. We evaluated whether feeding chickens with Cu-ITMF or Cu-OTMF contributes to the selection of Cu tolerant and MDR Enterococcus from rearing to slaughter. Animal faeces [2-3-days-old (n = 18); pre-slaughter (n = 16)] and their meat (n = 18), drinking-water (n = 14) and feed (n = 18) from seven intensive farms with ITMF and OTMF flocks (10.000-64.000 animals each; 2019-2020; Portugal) were sampled. Enterococcus were studied by cultural, molecular and whole-genome sequencing methods and Cu concentrations by ICP-MS. Enterococcus (n = 477; 60 % MDR) were identified in 80 % of the samples, with >50 % carrying isolates resistant to tetracycline, quinupristin-dalfopristin, erythromycin, streptomycin, ampicillin or ciprofloxacin. Enterococcus with Cu tolerance genes, especially tcrB ± cueO, were mainly found in faeces (85 %; E. faecium/E. lactis) of ITMF/OTMF flocks. Similar occurrence and load of tcrB ± cueO Enterococcus in the faeces was detected throughout the chickens' lifespan in the ITMF/OTMF flocks, decreasing in meat. Most of the polyclonal MDR Enterococcus population carrying tcrB ± cueO or only cueO (67 %) showed a wild-type phenotype (MICCuSO4 ≤ 12 mM) linked to absence of tcrYAZB or truncated variants, also detected in 85 % of Enterococcus public genomes from poultry. Finally, < 65 µg/g Cu was found in all faecal and meat samples. In conclusion, Cu present in ITMF/OTMF is not selecting Cu tolerant and MDR Enterococcus during chickens' lifespan. However, more studies are needed to assess the minimum concentration of Cu required for MDR bacterial selection and horizontal transfer of antibiotic resistance genes, which would support sustainable practices mitigating antibiotic resistance spread in animal production and the environment beyond.


Asunto(s)
Antibacterianos , Enterococcus , Humanos , Animales , Antibacterianos/farmacología , Aves de Corral/microbiología , Cobre/farmacología , Pollos/microbiología , Suplementos Dietéticos , Pruebas de Sensibilidad Microbiana , Farmacorresistencia Bacteriana/genética
15.
Microbiol Spectr ; 11(4): e0138623, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37428073

RESUMEN

Concerns about colistin-resistant bacteria in animal food-environmental-human ecosystems prompted the poultry sector to implement colistin restrictions and explore alternative trace metals/copper feed supplementation. The impact of these strategies on the selection and persistence of colistin-resistant Klebsiella pneumoniae in the whole poultry production chain needs clarification. We assessed colistin-resistant and copper-tolerant K. pneumoniae occurrence in chickens raised with inorganic and organic copper formulas from 1-day-old chicks to meat (7 farms from 2019 to 2020), after long-term colistin withdrawal (>2 years). Clonal diversity and K. pneumoniae adaptive features were characterized by cultural, molecular, and whole-genome-sequencing (WGS) approaches. Most chicken flocks (75%) carried K. pneumoniae at early and preslaughter stages, with a significant decrease (P < 0.05) in meat batches (17%) and sporadic water/feed contamination. High rates (>50%) of colistin-resistant/mcr-negative K. pneumoniae were observed among fecal samples, independently of feed. Most samples carried multidrug-resistant (90%) and copper-tolerant (81%; silA and pcoD positive and with a MICCuSO4 of ≥16 mM) isolates. WGS revealed accumulation of colistin resistance-associated mutations and F type multireplicon plasmids carrying antibiotic resistance and metal/copper tolerance genes. The K. pneumoniae population was polyclonal, with various lineages dispersed throughout poultry production. ST15-KL19, ST15-KL146, and ST392-KL27 and IncF plasmids were similar to those from global human clinical isolates, suggesting chicken production as a reservoir/source of clinically relevant K. pneumoniae lineages and genes with potential risk to humans through food and/or environmental exposure. Despite the limited mcr spread due to the long-term colistin ban, this action was ineffective in controlling colistin-resistant/mcr-negative K. pneumoniae, regardless of feed. This study provides crucial insights into the persistence of clinically relevant K. pneumoniae in the poultry production chain and highlights the need for continued surveillance and proactive food safety actions within a One Health perspective. IMPORTANCE The spread of bacteria resistant to last-resort antibiotics such as colistin throughout the food chain is a serious concern for public health. The poultry sector has responded by restricting colistin use and exploring alternative trace metals/copper feed supplements. However, it is unclear how and to which extent these changes impact the selection and persistence of clinically relevant Klebsiella pneumoniae throughout the poultry chain. We found a high occurrence of copper-tolerant and colistin-resistant/mcr-negative K. pneumoniae in chicken flocks, regardless of inorganic and organic copper formulas use and a long-term colistin ban. Despite the high K. pneumoniae isolate diversity, the occurrence of identical lineages and plasmids across samples and/or clinical isolates suggests poultry as a potential source of human K. pneumoniae exposure. This study highlights the need for continued surveillance and proactive farm-to-fork actions to mitigate the risks to public health, relevant for stakeholders involved in the food industry and policymakers tasked with regulating food safety.


Asunto(s)
Colistina , Aves de Corral , Animales , Humanos , Colistina/farmacología , Klebsiella pneumoniae , Granjas , Cobre/farmacología , Pollos/microbiología , Ecosistema , Antibacterianos/farmacología , Plásmidos , Pruebas de Sensibilidad Microbiana , Farmacorresistencia Bacteriana/genética
16.
Res Vet Sci ; 162: 104934, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37421824

RESUMEN

The purpose of this study was to examine the probiotic characteristics and selenium (Se) bioaccumulation potential of five Lactobacillus strains in vitro. Lactobacillus acidophilus, L. delbrueckii subsp. lactis, L. reuteri, L. gallinarum, and L. animalis were among the strains employed. As significant aspects of probiotics, identification, and evaluation of their survival potential in the gastrointestinal system were undertaken. Although all experimental Lactobacillus strains bioaccumulated Se (IV) concentrations in media culture, three Lactobacillus strains (L. animalis, L. gallinarum, and L. acidophilus) bioaccumulated the highest Se concentrations (23.08, 8.62, and 8.51 mg/g, respectively) after culture in the presence of 1.5 mg/ml sodium selenite. By disc diffusion, all isolates were evaluated for antibiotic susceptibility against six antibiotics, including ciprofloxacin, ampicillin, methicillin, streptomycin, tetracycline, and trimethoprim-sulfamethoxazole. Many of the isolates tested positive for resistance to some of the antibiotics utilized. The L. reuteri and L. gallinarum were found to be resistant to about 50% of the antibiotics that were tested. In terms of acid tolerance, L. animalis showed significant resistance at acidic pH by 1.72 log unit reduction whereas L. delbrueckii and L. galliinarum showed significant sensitivity at acidic pH (P > 0.05). Bile tolerance was addressed as an important aspect of the safety assessment for probiotics. There were variances in acid and bile tolerance among species, although all of them tolerated stress conditions to an acceptable degree. Upon comparing the various species, it was observed that L. gallinarum exhibited a significant decline in growth, as evidenced by a decrease of 1.39 log units in cell viability. On the other hand, L. acidophilus and L. animalis demonstrated remarkable bile tolerance, with 0.09 and 0.23 log unit reduction respectively (P < 0.05). These results suggest that L. animalis, L. gallinarum, and L. acidophilus, can be good candidates to evaluate them in vivo in further investigations due to their tolerance to acid, and bile, antibiotic resistance, and strong ability to bioaccumulate Se in chickens.


Asunto(s)
Lactobacillales , Probióticos , Selenio , Animales , Selenio/farmacología , Aves de Corral , Bioacumulación , Pollos/microbiología , Antibacterianos/farmacología , Lactobacillus , Probióticos/farmacología
17.
Environ Sci Pollut Res Int ; 30(39): 91189-91198, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37474855

RESUMEN

The decomposition process of poultry manure is generally mediated by microorganisms, whose degradation activity has beneficial effects on soil fertility but, on the other hand, leads to the generation of malodour gas. Indeed, a relevant problem of poultry farms is represented by the release of bad smells, which are mainly a consequence of decomposition process of chicken feces, chicken bedding, plumes, dropped feed, and dust. Furthermore, the unpleasant odour, associated with poultry manure degradation, not only limits its use in agriculture but also negatively affects the housing communities located near the farms. This study aimed at evaluating the effects in vitro of different doses of Effective Microorganisms (EM), mainly consisting of live communities of lactic acid bacteria, photosynthetic bacteria, and yeasts, on poultry manure alone or with zeolite, a porous mineral with absorbent and ion-exchange properties, belonging to the family of aluminosilicates. The obtained results demonstrated that these treatments were able to reduce the poultry manure malodours, associated mainly with a decrease in the ammonia (NH3) levels with respect to controls. The pH tended to increase, the nitrogen to go down, and the phosphorus to go up. Thus, all the effects described above were evident, testifying to a slower degradation of proteins, both with EM alone or in combination with zeolite. The presence of a pool of pesticides (65 components) was evaluated, and no variation was observed in the different experimental conditions versus control, as well as for REEs and metals. In conclusion, these preliminary results demonstrated that the use of EM with or without the addition of zeolite is a valid tool to eliminate the bad smell of manure and to make it a useful product as a fertilizer.


Asunto(s)
Aves de Corral , Zeolitas , Animales , Zeolitas/química , Estiércol/microbiología , Pollos/metabolismo , Fósforo , Amoníaco/análisis , Suelo/química , Nitrógeno/metabolismo
18.
PLoS One ; 18(6): e0284724, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37363920

RESUMEN

Inert digestibility index markers such as titanium dioxide are universally accepted to provide simple measurement of digestive tract retention and relative digestibility in poultry feeding trials. Their use underpins industry practice: specifically dosing regimens for adjunct enzymes added to animal feed. Among these, phytases, enzymes that degrade dietary phytate, inositol hexakisphosphate, represent a billion-dollar sector in an industry that raises ca. 70 billion chickens/annum. Unbeknown to the feed enzyme sector, is the growth in cell biology of use of titanium dioxide for enrichment of inositol phosphates from extracts of cells and tissues. The adoption of titanium dioxide in cell biology arises from its affinity under acid conditions for phosphates, suggesting that in feeding trial contexts that target phytate degradation this marker may not be as inert as assumed. We show that feed grade titanium dioxide enriches a mixed population of higher and lower inositol phosphates from acid solutions. Additionally, we compared the extractable inositol phosphates in gizzard and ileal digesta of 21day old male Ross 308 broilers fed three phytase doses (0, 500 and 6000 FTU/kg feed) and one inositol dose (2g/kg feed). This experiment was performed with or without titanium dioxide added as a digestibility index marker at a level of 0.5%, with all diets fed for 21 days. Analysis yielded no significant difference in effect of phytase inclusion in the presence or absence of titanium dioxide. Thus, despite the utility of titanium dioxide for recovery of inositol phosphates from biological samples, it seems that its use as an inert marker in digestibility trials is justified-as its inclusion in mash diets does not interfere with the recovery of inositol phosphates from digesta samples.


Asunto(s)
6-Fitasa , Suplementos Dietéticos , Animales , Masculino , Suplementos Dietéticos/análisis , Ácido Fítico/metabolismo , Aves de Corral/metabolismo , Pollos , 6-Fitasa/metabolismo , Digestión , Dieta/veterinaria , Fosfatos de Inositol/metabolismo , Alimentación Animal/análisis , Fenómenos Fisiológicos Nutricionales de los Animales
20.
Microbiol Spectr ; 11(3): e0429622, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37140373

RESUMEN

The increase in antibiotic-resistant avian-pathogenic Escherichia coli (APEC), the causative agent of colibacillosis in poultry, warrants urgent research and the development of alternative therapies. This study describes the isolation and characterization of 19 genetically diverse, lytic coliphages, 8 of which were tested in combination for their efficacy in controlling in ovo APEC infections. Genome homology analysis revealed that the phages belong to nine different genera, one of them being a novel genus (Nouzillyvirus). One phage, REC, was derived from a recombination event between two Phapecoctavirus phages (ESCO5 and ESCO37) isolated in this study. Twenty-six of the 30 APEC strains tested were lysed by at least one phage. Phages exhibited varying infectious capacities, with narrow to broad host ranges. The broad host range of some phages could be partially explained by the presence of receptor-binding protein carrying a polysaccharidase domain. To demonstrate their therapeutic potential, a phage cocktail consisting of eight phages belonging to eight different genera was tested against BEN4358, an APEC O2 strain. In vitro, this phage cocktail fully inhibited the growth of BEN4358. In a chicken lethality embryo assay, the phage cocktail enabled 90% of phage-treated embryos to survive infection with BEN4358, compared with 0% of nontreated embryos, indicating that these novel phages are good candidates to successfully treat colibacillosis in poultry. IMPORTANCE Colibacillosis, the most common bacterial disease affecting poultry, is mainly treated by antibiotics. Due to the increased prevalence of multidrug-resistant avian-pathogenic Escherichia coli, there is an urgent need to assess the efficacy of alternatives to antibiotherapy, such as phage therapy. Here, we have isolated and characterized 19 coliphages that belong to nine phage genera. We showed that a combination of 8 of these phages was efficacious in vitro to control the growth of a clinical isolate of E. coli. Used in ovo, this phage combination allowed embryos to survive APEC infection. Thus, this phage combination represents a promising treatment for avian colibacillosis.


Asunto(s)
Bacteriófagos , Infecciones por Escherichia coli , Enfermedades de las Aves de Corral , Animales , Escherichia coli/genética , Bacteriófagos/genética , Infecciones por Escherichia coli/terapia , Infecciones por Escherichia coli/veterinaria , Infecciones por Escherichia coli/microbiología , Colifagos/genética , Pollos , Aves de Corral , Enfermedades de las Aves de Corral/terapia , Enfermedades de las Aves de Corral/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA